Further Exploration

Online Discovery

Explore why we are going to the Moon, what we hope to gain, and how we plan to get there on NASA’s Exploration Pages. Video clips, images, and articles highlight upcoming missions, lunar vehicles, and the planning that is underway.

The Exploration Systems Mission Directorate develops capabilities and technology to make human and robotic exploration of our solar system possible — and safe. Find out the latest in exploration engineering!

http://www.nasa.gov/directorates/esmd/home/index.html

NASA’s Lunar Precursor Robotic Program oversees robotic missions to the Moon that provide more information about the lunar environment including the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS). http://moon.msfc.nasa.gov/

Share simulated lunar regolith with students. This material, used by NASA to create a Moon-like environment during equipment and space suit testing, makes a great comparison to soils found on Earth.

Space artist Pat Rawlings’ illustrations share a vision of what it will be like to live and work on the Moon — and other places in our solar system. http://www.patrawlings.com/default.cfm

More Classroom Resources

Explore! To the Moon and Beyond with the Lunar Reconnaissance Orbiter — http://www.lpi.usra.edu/education/explore/LRO/

A suite of hands-on activities that share the LRO mission, explore how our Moon formed and changed through time, and investigate possible sites for a future lunar outpost.

A plethora of background pages and lesson plans from various sources examine the challenges of establishing a lunar base, from transport to resource mining to aspects of human interaction.

Through this collection of lesson plans from the Challenger Center, students explore the lunar environment, learn about the geology of the Moon, and build lunar bases.

Additional Reading

About This Poster

This is one of a three-poster set that examines how our geologic understanding of the Moon will be used as we plan to live and work there in the future. The poster front, designed for sixth- to ninth-grade students, presents the resources available for future lunar outposts. Much of our understanding of these resources is based on data from orbiting spectrometers and other instruments, and validated by Apollo samples. The poster back is designed to provide educators with background information, ideas for lessons, and resources to support further student exploration. The complete set of posters can be found at http://www.lpi.usra.edu/education/moon_poster.shtml.

Concept Development and Content Review: Cassandra Runyon, E/PO Lead, Moon Mineralogy Mapper, College of Charleston; Stephanie Shipp, Lunar and Planetary Institute; Jaclyn Allen, Astromaterials Research and Exploration Science, NASA Johnson Space Center; Marilyn Lindstrom, NASA Headquarters.

Content Review: Dr. Carlton Allen, Astromaterials Curator, Astromaterials Research and Exploration Science, NASA Johnson Space Center; Mr. Brian Day, E/PO Lead, Lunar Crater Observation and Sensing Satellite, NASA Ames Research Center; Dr. Clive Neal, Chair, Lunar Exploration Analysis Group, University of Notre Dame; Dr. Carlé Pieters, Principal Investigator, Moon Mineralogy Mapper, Brown University; Dr. Paul Spudis, PI, Miniature Synthetic Aperture Radar (Mini-SAR), Lunar and Planetary Institute; Ms. Stephanie Stockman, E/PO Lead, Lunar Reconnaissance Orbiter Mission, NASA Goddard Space Flight Center.

Appreciation is extended to the students and teachers of McWhirter Elementary in Webster, Texas, and Sugarland Middle School, in Sugarland, Texas, for their insightful critique of this project.

© 2008 Lunar and Planetary Institute/Universities Space Research Association, LPI Contribution No. 1368, ISSN No. 0161-5297